EXERCISES IN MATHEMATICS

Series F, No. 2: Answers

First Principles

1. Differentiate from first principles $y = x^2 - 4x$.

Answer. We have $y + \delta y = (x + \delta x)^2 - 4(x + \delta x)$. Subtracting $y = x^2 - 4x$ gives

$$\delta y = \left[(x + \delta x)^2 - 4(x + \delta x) \right] - \left[x^2 - 4x \right]$$

= $x^2 + 2x(\delta x) + (\delta x)^2 - 4x - 4(\delta x) - x^2 + 4x$
= $2x(\delta x) - 4(\delta x) + (\delta x)^2$.

Dividing by δx gives

$$\frac{\delta y}{\delta x} = 2x - 4 + \delta x;$$

and the limit as $\delta x \to 0$ is

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x}\right)$$
$$= 2x - 4.$$

2. Differentiate from first principles f(x) = 1/x.

Answer. Subtracting y = 1/x from $y + \delta y = 1/(x + \delta x)$ gives

$$\delta y = \frac{1}{x + \delta x} - \frac{1}{x} = \frac{x - (x + \delta x)}{(x + \delta x)x}$$
$$= \frac{-\delta x}{(x + \delta x)x}.$$

Then, dividing by δx gives

$$\frac{\delta y}{\delta x} = \frac{-1}{(x+\delta x)x},$$

from which

$$\lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x} \right) = \frac{dy}{dx} = -\frac{1}{x^2}.$$

EXERCISES IN MATHEMATICS, G1

Composite Functions

3. Find dy/dx when $y = (x^2 - 5x + 7)^4$.

Answer. Define $u = (x^2 - 5x + 7)$. Then $y = u^4$, and hence

$$\frac{dy}{du} = 4u^3$$
 and $\frac{du}{dx} = 2x - 5.$

By using the chain rule, we get

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 4(x^2 - 5x + 7)^3(2x - 5).$$

4. Find dy/dx when $y = (\sqrt{x} - 1/\sqrt{x})^5$.

Answer. Define
$$u = (\sqrt{x} - 1/\sqrt{x}) = x^{\frac{1}{2}} - x^{-\frac{1}{2}}$$
. Then $y = u^5$, whence

$$\frac{dy}{du} = 5u^4$$
 and $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}}$

Hence, using the chain rule, we get

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{5}{2} \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right)^4 \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x^3}} \right).$$

5. Find the derivative of the function $f(x) = (2 - x^4)^{-3}$.

Answer. Define $u = 2 - x^4$ and $y = u^{-3}$. Then

$$\frac{dy}{du} = -3u^{-4}$$
 and $\frac{du}{dx} = -4x^3$.

Hence, using the chain rule, we find that the derivative of the function is

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{12x^3}{(2-x^4)^4}.$$

6. Differentiate $\sqrt{(1+x^{-1})}$.

Answer. Define $y = u^{\frac{1}{2}}$ with $u = 1 + x^{-1}$. Then

$$\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}} \quad \text{and} \quad \frac{du}{dx} = -x^{-2}.$$

EXERCISES IN MATHEMATICS, G1

Then the derivative of the function is found via the chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{-1}{2x^2\sqrt{1+x^{-1}}}.$$

Products and Quotients

7. Differentiate $y = (2x+1)^3(x-8)^7$ with respect to x.

Answer. Define $u = (2x+1)^3$ and $v = (x-8)^7$. Then

$$\frac{du}{dx} = 6(2x+1)^2$$
 and $\frac{dv}{dx} = 7(x-8)^6;$

whence the derivative of y = uv is found via the product rule:

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

= 7(2x + 1)³(x - 8)⁶ + 6(x - 8)⁷(2x + 1)²
= 5(2x + 1)²(x - 8)⁶(4x - 11).

8. Find the derivative of $\sqrt{(x+3)^3(x-1)^4}$.

Answer. Define $y = \sqrt{p} = \sqrt{uv}$, with $u = (x+3)^3$ and $v = (x-1)^4$. Then

$$\frac{dy}{dp} = \frac{1}{2\sqrt{p}}, \qquad \frac{du}{dx} = 3(x+3)^2 \qquad \text{and} \qquad \frac{dv}{dx} = 4(x-1)^3,$$

whence the product rule gives

$$\frac{dp}{dx} = \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

= 4(x+3)³(x-1)³ + 3(x-1)⁴(x+3)²
= (x+3)²(x-1)³(7x+9).

Applying the chain rule gives the derivative in question:

$$\frac{dy}{dx} = \frac{dy}{dp} \times \frac{dp}{dx}$$
$$= \frac{1}{2} \frac{(x+3)^2(x-1)^3(7x+9)}{\sqrt{(x+3)^3(x-1)^4}}$$
$$= \frac{1}{2} (x-1)(7x+9)\sqrt{(x+3)}.$$

EXERCISES IN MATHEMATICS, G1

9. Differentiate $3x^2/(x-1)^4$ with respect to x.

Answer. Let y = u/v with $u = 3x^2$ and $v = (x - 1)^4$. Then

$$\frac{du}{dx} = 6x$$
 and $\frac{dv}{dx} = 4(x-1)^3$,

and so the quotient rule gives

$$\frac{dy}{dx} = \frac{v(du/dx) - u(dv/dx)}{v^2}$$
$$= \frac{6x(x-1)^4 - 12x^2(x-1)^3}{(x-1)^8}$$
$$= -\frac{6x(x-1)^3(x+1)}{(x-1)^8} = -\frac{6x(x+1)}{(x-1)^5}.$$

10. Differentiate $\sqrt{(x-3)/(x^2+2)}$ with respect to x.

Answer. Define y = u/v with $u = (x - 3)^{\frac{1}{2}}$ and $v = (x^2 + 2)^{\frac{1}{2}}$. Then

$$\frac{du}{dx} = \frac{1}{2}(x-3)^{-\frac{1}{2}}$$
 and $\frac{dv}{dx} = x(x^2+2)^{-\frac{1}{2}}$,

and so the quotient rule gives

$$\frac{dy}{dx} = \frac{v(du/dx) - u(dv/dx)}{v^2}$$
$$= \frac{\frac{1}{2}(x^2 + 2)^{\frac{1}{2}}(x - 3)^{-\frac{1}{2}} - x(x - 3)^{\frac{1}{2}}(x^2 + 2)^{-\frac{1}{2}}}{x^2 + 2}.$$

Next, multiplying top and bottom of this expression by $2(x-3)^{\frac{1}{2}}(x^2+2)^{\frac{1}{2}}$ and simplifying gives

$$\frac{dy}{dx} = \frac{6x - x^2 + 2}{(x^2 + 2)\sqrt{(x - 3)(x^2 + 2)}}.$$