EXERCISES IN MATHEMATICS

Series F, No. 2: Answers

First Principles

1. Differentiate from first principles $y=x^{2}-4 x$.

Answer. We have $y+\delta y=(x+\delta x)^{2}-4(x+\delta x)$. Subtracting $y=x^{2}-4 x$ gives

$$
\begin{aligned}
\delta y & =\left[(x+\delta x)^{2}-4(x+\delta x)\right]-\left[x^{2}-4 x\right] \\
& =x^{2}+2 x(\delta x)+(\delta x)^{2}-4 x-4(\delta x)-x^{2}+4 x \\
& =2 x(\delta x)-4(\delta x)+(\delta x)^{2} .
\end{aligned}
$$

Dividing by δx gives

$$
\frac{\delta y}{\delta x}=2 x-4+\delta x
$$

and the limit as $\delta x \rightarrow 0$ is

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\delta x \rightarrow 0}\left(\frac{\delta y}{\delta x}\right) \\
& =2 x-4 .
\end{aligned}
$$

2. Differentiate from first principles $f(x)=1 / x$.

Answer. Subtracting $y=1 / x$ from $y+\delta y=1 /(x+\delta x)$ gives

$$
\begin{aligned}
\delta y=\frac{1}{x+\delta x}-\frac{1}{x} & =\frac{x-(x+\delta x)}{(x+\delta x) x} \\
& =\frac{-\delta x}{(x+\delta x) x} .
\end{aligned}
$$

Then, dividing by δx gives

$$
\frac{\delta y}{\delta x}=\frac{-1}{(x+\delta x) x},
$$

from which

$$
\lim _{\delta x \rightarrow 0}\left(\frac{\delta y}{\delta x}\right)=\frac{d y}{d x}=-\frac{1}{x^{2}}
$$

EXERCISES IN MATHEMATICS, G1

Composite Functions

3. Find $d y / d x$ when $y=\left(x^{2}-5 x+7\right)^{4}$.

Answer. Define $u=\left(x^{2}-5 x+7\right)$. Then $y=u^{4}$, and hence

$$
\frac{d y}{d u}=4 u^{3} \quad \text { and } \quad \frac{d u}{d x}=2 x-5 .
$$

By using the chain rule, we get

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=4\left(x^{2}-5 x+7\right)^{3}(2 x-5) .
$$

4. Find $d y / d x$ when $y=(\sqrt{x}-1 / \sqrt{x})^{5}$.

Answer. Define $u=(\sqrt{x}-1 / \sqrt{x})=x^{\frac{1}{2}}-x^{-\frac{1}{2}}$. Then $y=u^{5}$, whence

$$
\frac{d y}{d u}=5 u^{4} \quad \text { and } \quad \frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}} .
$$

Hence, using the chain rule, we get

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{5}{2}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{4}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x^{3}}}\right)
$$

5. Find the derivative of the function $f(x)=\left(2-x^{4}\right)^{-3}$.

Answer. Define $u=2-x^{4}$ and $y=u^{-3}$. Then

$$
\frac{d y}{d u}=-3 u^{-4} \quad \text { and } \quad \frac{d u}{d x}=-4 x^{3}
$$

Hence, using the chain rule, we find that the derivative of the function is

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{12 x^{3}}{\left(2-x^{4}\right)^{4}}
$$

6. Differentiate $\sqrt{\left(1+x^{-1}\right)}$.

Answer. Define $y=u^{\frac{1}{2}}$ with $u=1+x^{-1}$. Then

$$
\frac{d y}{d u}=\frac{1}{2} u^{-\frac{1}{2}} \quad \text { and } \quad \frac{d u}{d x}=-x^{-2}
$$

EXERCISES IN MATHEMATICS, G1

Then the derivative of the function is found via the chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\frac{-1}{2 x^{2} \sqrt{1+x^{-1}}} .
$$

Products and Quotients

7. Differentiate $y=(2 x+1)^{3}(x-8)^{7}$ with respect to x.

Answer. Define $u=(2 x+1)^{3}$ and $v=(x-8)^{7}$. Then

$$
\frac{d u}{d x}=6(2 x+1)^{2} \quad \text { and } \quad \frac{d v}{d x}=7(x-8)^{6} ;
$$

whence the derivative of $y=u v$ is found via the product rule:

$$
\begin{aligned}
\frac{d}{d x}(u v) & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =7(2 x+1)^{3}(x-8)^{6}+6(x-8)^{7}(2 x+1)^{2} \\
& =5(2 x+1)^{2}(x-8)^{6}(4 x-11) .
\end{aligned}
$$

8. Find the derivative of $\sqrt{(x+3)^{3}(x-1)^{4}}$.

Answer. Define $y=\sqrt{p}=\sqrt{u v}$, with $u=(x+3)^{3}$ and $v=(x-1)^{4}$. Then

$$
\frac{d y}{d p}=\frac{1}{2 \sqrt{p}}, \quad \frac{d u}{d x}=3(x+3)^{2} \quad \text { and } \quad \frac{d v}{d x}=4(x-1)^{3}
$$

whence the product rule gives

$$
\begin{aligned}
\frac{d p}{d x} & =\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =4(x+3)^{3}(x-1)^{3}+3(x-1)^{4}(x+3)^{2} \\
& =(x+3)^{2}(x-1)^{3}(7 x+9) .
\end{aligned}
$$

Applying the chain rule gives the derivative in question:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d p} \times \frac{d p}{d x} \\
& =\frac{1}{2} \frac{(x+3)^{2}(x-1)^{3}(7 x+9)}{\sqrt{(x+3)^{3}(x-1)^{4}}} \\
& =\frac{1}{2}(x-1)(7 x+9) \sqrt{(x+3)} .
\end{aligned}
$$

EXERCISES IN MATHEMATICS, G1

9. Differentiate $3 x^{2} /(x-1)^{4}$ with respect to x.

Answer. Let $y=u / v$ with $u=3 x^{2}$ and $v=(x-1)^{4}$. Then

$$
\frac{d u}{d x}=6 x \quad \text { and } \quad \frac{d v}{d x}=4(x-1)^{3},
$$

and so the quotient rule gives

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v(d u / d x)-u(d v / d x)}{v^{2}} \\
& =\frac{6 x(x-1)^{4}-12 x^{2}(x-1)^{3}}{(x-1)^{8}} \\
& =-\frac{6 x(x-1)^{3}(x+1)}{(x-1)^{8}}=-\frac{6 x(x+1)}{(x-1)^{5}}
\end{aligned}
$$

10. Differentiate $\sqrt{(x-3) /\left(x^{2}+2\right)}$ with respect to x.

Answer. Define $y=u / v$ with $u=(x-3)^{\frac{1}{2}}$ and $v=\left(x^{2}+2\right)^{\frac{1}{2}}$. Then

$$
\frac{d u}{d x}=\frac{1}{2}(x-3)^{-\frac{1}{2}} \quad \text { and } \quad \frac{d v}{d x}=x\left(x^{2}+2\right)^{-\frac{1}{2}}
$$

and so the quotient rule gives

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v(d u / d x)-u(d v / d x)}{v^{2}} \\
& =\frac{\frac{1}{2}\left(x^{2}+2\right)^{\frac{1}{2}}(x-3)^{-\frac{1}{2}}-x(x-3)^{\frac{1}{2}}\left(x^{2}+2\right)^{-\frac{1}{2}}}{x^{2}+2}
\end{aligned}
$$

Next, multiplying top and bottom of this expression by $2(x-3)^{\frac{1}{2}}\left(x^{2}+2\right)^{\frac{1}{2}}$ and simplifying gives

$$
\frac{d y}{d x}=\frac{6 x-x^{2}+2}{\left(x^{2}+2\right) \sqrt{(x-3)\left(x^{2}+2\right)}}
$$

